I was having a conversation with a group of casual
fans the other night and I was once again hit with the open question of, “How
hard can it really be to fill out a perfect bracket?” due to the Billion Dollar
Bracket Challenge that Warren Buffet and Quicken Loans has thrown out there. Well, for one thing, it’s never been done. So, I’m gonna’ go out on a limb and say based
on that evidence, it’s pretty hard. But
that didn’t convince these guys…I started with some simple math and they
pooh-poohed it saying I didn’t need to worry about the high seeds….Okay, I
agree with that. But there’s still a lot
of variations that exist.
For the sake of argument and because I
love probability, let’s do some math and figure a couple of things
out. First, if you filled the bracket
out with every conceivable iteration that existed, you would need to complete a
bracket that first considered every team winning the championship (yes, even
the 16 seeds) and then progressing through each of the 63 (7) remaining teams
to win the whole thing against that 1 Seed….
So, it’s a power calculation of 2 choices to the 64th, which
equals:
18,446,744,073,709,600,000 (that’s
uh...lets' see, million, billion, trillion, zillion...oh yeah, Quintillion!)
So, even if you
were filling the brackets out at a rate of 100,000,000 a second, you wouldn’t
be able to even get half of the variations in from the time the brackets come
out until they are due on Thursday at noon….
But that’s not
reality. We can assume a couple of
things:
No16 Seed has ever
won a game. Now, you can assume that there
is on a 2 to the 60th power of possibilities as you won’t have to
complete a bracket for every 16 Seed winning the title Variation, which gives
us:
144,115,188,075,856,000
– Hey! Getting manageable…Were out of the
Quintillions!
Also, assume for a
second that there have never been ANY 12 through 16 seeds in the Final
Four! If we wanted to eliminate upsets
early, we could then take another 20 decisions out of the matrix giving us 2 to
the 37th power:
137,438,953,472 That’s only in the Billions! I think that’s almost doable!
But wait! What if we assume per the Bracket Science
Championship Criteria that only 8 teams this season can actually win the whole thing? Now, we can limit the number of seeds we have
to take all the way to the championship and only take them to their “Seed Limit”
of where they would lose to a higher seed.
This one is tricky as we have to do two calculations and add them
together. So, we in effect need to take
the 8 champions we pick per Bracket Science, or 2 to the 8th power
and then add the remaining 29 seeds for the total potential scenarios against those 8 seeds winning, or
2 to the 29th giving us:
536,870,912 Million!
That’s DOABLE!!!! For a Billion
Dollars! Isn’t it? Come On!
Who’s with me???
Okay…By your silence
I’m guessing that you’re still thinking it’s an impossible task. And I happen to agree with you. There’s only:
Wow…No wonder
everyone came out with a Billion Dollar Bracket idea….It looks impossible....because it is.
Anyway, have fun
filling out your brackets and may the best (and LUCKIEST) man have a shot at
winning the Billion…
No comments:
Post a Comment